Question \#78195, Chemistry / General Chemistry

A liquid has a specific heat of $2.81 \mathrm{~J} / \mathrm{goC}$, a mass of 90.0 g , and an initial temperature of 25.0 oC . What is the new temperature of the liquid if $2,350 \mathrm{~J}$
of energy are removed from it?
A. 1.57 oC
B. $9.30 \circ \mathrm{C}$
C. 15.7 oC
D. 34.3 oC
E. None of the Above

SOLUTION

$$
Q=\mathrm{c} * m *(\mathrm{t} 1-\mathrm{t} 2),
$$

in it Q is the heat energy, J ;
c is the specific heat $\mathrm{J} /\left(\mathrm{g}^{*}{ }^{\circ} \mathrm{C}\right)$;
m is the mass of the object, g ;
t 1 is the initial temperature in ${ }^{\circ} \mathrm{C}$;
t2 is the new temperature of the liquid $\mathrm{in}^{\circ} \mathrm{C}$;

$$
\begin{gathered}
\mathrm{t} 2=t 1-\frac{Q}{c * m}, \\
\mathrm{t} 2=25-\frac{2,350 \mathrm{~J}}{2.81 \mathrm{~J} /\left(\mathrm{g} *^{\circ} \mathrm{C}\right) * 90.0 \mathrm{~g}}=15.7^{\circ} \mathrm{C}
\end{gathered}
$$

ANSWER:C

