Calculate the ionization potential energy of an electron in an excited state, if the electron was travelling at energy n=1

Solution:

The Rydberg Expression is given by:

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

 λ is the wavelength of the emission line n_1 is the principle quantum number of the lower energy level n_2 is the principle quantum number of the higher energy level R is the Rydberg Constant $1.097{\times}10^7~m^{-1}$

For example, the energy levels converge and coalesce:

Hydrogen

Energy Levels for the Hydrogen Atom

At higher and higher values of n₂ the term $\frac{1}{n_2^2}$ tends to zero. Effectively n₂ = ∞ and the electron

has left the atom, forming an ion.

The Rydberg Expression refers to emission where an electron falls from a higher energy level to a lower one, emitting a photon.