Question:

1) Find the result of the following integrals.

2) Find the arc curve, $y=x^{\wedge} 4 / 8+1 / \llbracket 4 x \rrbracket \wedge 2$ from $x=1$ to $x=2$.
3) Find the results of the following integrals by using substitution rule.

b) $\int 0^{0}{ }^{\wedge} 1$ \#\#\# $\llbracket\left(e^{\wedge} z+1\right) /\left(e^{\wedge} z+z\right) d z \rrbracket$

Solution:

1) From our knowledge of derivatives, we can immediately write down a number of antiderivatives.

Here is a list of those most often used:

$$
\begin{gathered}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad \text { if } n \neq-1 \\
\int x^{-1} d x=\ln |x|+C \\
\int e^{x} d x=e^{x}+C \\
\int \sin x d x=-\cos x+C
\end{gathered}
$$

2)

$$
\begin{aligned}
& D(x)=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& s=D(x)=\sum \sqrt{(\Delta x)^{2}+\frac{(\Delta y)^{2}}{(\Delta x)^{2}} \cdot(\Delta x)^{2}} \\
& =\sum \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}}(\Delta x) \\
& =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{3}}{2}+\frac{x}{2}=\frac{1}{2}\left(x^{3}+x\right) \\
& \begin{aligned}
\left(\frac{d y}{d x}\right)^{2} & =\frac{1}{4}\left(x^{3}+x\right)^{2}=\frac{1}{4}\left(x^{6}+2 x^{4}+x^{2}\right) \\
& =\int_{1}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\frac{x^{6}+2 x^{4}+x^{2}}{4}} d x \\
& =\int_{1}^{2} \sqrt{\frac{4+x^{6}+2 x^{4}+x^{2}}{4}} d x \\
& =\frac{1}{2} \int_{1}^{2} \sqrt{x^{6}+2 x^{4}+x^{2}+4} d x \\
& =\frac{1}{2} \int_{1}^{2} \sqrt{\left(x^{3}+x\right)^{2}+4} d x
\end{aligned}
\end{aligned}
$$

Answer: 2.84

Answer provided by AssignmentExpert.com

