Answer on Question #77349, Chemistry / General Chemistry

Between the weak field octahedral complexes of d5 ion and d7 ion, which one will have a larger magnetic moment ?

Solution

Crystal field splitting diagram for d⁵ ion (in weak field):

This complex is paramagnetic as it has five lone electrons.

The formula used to calculate the spin-only magnetic moment, based on the number of unpaired electrons n, is:

$$\mu_{so} = \sqrt{n(n+2)}\mu_B$$

For ion d⁵ $\mu_{so} = \sqrt{5(5+2)} = \sqrt{35} = 5.92 \ \mu_B$

Crystal field splitting diagram for d⁷ ion (in weak field):

This complex is paramagnetic as it has three lone electrons.

The formula used to calculate the spin-only magnetic moment, based on the number of unpaired electrons n, is:

$$\mu_{so} = \sqrt{n(n+2)}\mu_B$$

For ion d⁷ $\mu_{so} = \sqrt{3(3+2)} = \sqrt{15} = 3.87 \ \mu_B$

So, the weak field octahedral complex of d⁵ ion has a larger magnetic moment (5.92 μ_B) than the weak field octahedral complex of d⁷ ion (3.87 μ_B).

Answer: the weak field octahedral complex of d⁵ ion has a larger magnetic moment (5.92 μ_B) than the weak field octahedral complex of d⁷ ion (3.87 μ_B).

Answer provided by AssignmentExpert.com