Answer on Question #77334, Chemistry / General Chemistry

A gas cylinder has v=0.04m³ contains helium .Its temprature is 230°c ,the pressure is 20atm.Find mass of xenon,if the mole fraction of hydrogen is 0.90

Solution

Note: there should be two gases in this task: helium and one more. It seems like mole fraction of helium (not hydrogen) is given.

V=0.04 m³

T= 230[°]C =230+273.15 = 503.15 K

P= 20 atm = 20.101325=2026500 Pa

χ(He) =0.90

Constants:

 $R = 8.314 \text{ m}^{3}\text{Pa mol}^{-1}\text{K}^{-1}$

m(Xe) - ?

We should use formula of Ideal Gas Law to find total amount of chemical substance of two gases:

PV=n_{total}RT

2026500 Pa
$$\cdot$$
0.04 m³ =n_{total}· 8.314 m³Pa mol⁻¹K⁻¹·503.15 K

n_{total}= 19.38 mol

As
$$\chi_i = \frac{n_i}{n_{total}}$$
 then $n_i = \chi_i \times n_{total}$, and $\chi(Xe) = 1-\chi(He)$, find n(Xe):

 $n(Xe) = \chi(Xe) \cdot n_{total} = (1 - \chi(He)) \cdot n_{total} = (1 - 0.9) \cdot 19.38 = 1.938 \text{ (mol)}.$

Fnd mass of xenon:

m= M∙n,

as Ar(Xe)= 131 and Ar(Xe)=M(Xe) ,we have:

m(Xe) = 131·1.938 = 253.9 (g)

Answer: 253.9 g