Answer on Question \#77334, Chemistry / General Chemistry

A gas cylinder has $\mathrm{v}=0.04 \mathrm{~m}^{3}$ contains helium . Its temprature is $230^{\circ} \mathrm{C}$, the pressure is 20atm. Find mass of xenon, if the mole fraction of hydrogen is 0.90

Solution

Note: there should be two gases in this task: helium and one more. It seems like mole fraction of helium (not hydrogen) is given.
$V=0.04 \mathrm{~m}^{3}$
$\mathrm{T}=230^{\circ} \mathrm{C}=230+273.15=503.15 \mathrm{~K}$
$\mathrm{P}=20 \mathrm{~atm}=20 \cdot 101325=2026500 \mathrm{~Pa}$
$\chi(\mathrm{He})=0.90$
Constants:
$R=8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$m(X e)-$?
We should use formula of Ideal Gas Law to find total amount of chemical substance of two gases:
$P V=n_{\text {total }} R T$
$2026500 \mathrm{~Pa} \cdot 0.04 \mathrm{~m}^{3}=\mathrm{n}_{\text {total }} \cdot 8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} \cdot 503.15 \mathrm{~K}$
$n_{\text {total }}=19.38 \mathrm{~mol}$
As $\chi_{i}=\frac{n_{i}}{n_{\text {total }}}$ then $n_{i}=\chi_{i} \times n_{\text {total }}$, and $\chi(\mathrm{Xe})=1-\chi(\mathrm{He})$, find $\mathrm{n}(\mathrm{Xe})$:
$\mathrm{n}(\mathrm{Xe})=\chi(\mathrm{Xe}) \cdot n_{\text {total }}=(1-\chi(\mathrm{He})) \cdot n_{\text {total }}=(1-0.9) \cdot 19.38=1.938(\mathrm{~mol})$.
Fnd mass of xenon:
$m=M \cdot n$,
as $\operatorname{Ar}(\mathrm{Xe})=131$ and $\operatorname{Ar}(\mathrm{Xe})=\mathrm{M}(\mathrm{Xe})$, we have:
$m(X e)=131 \cdot 1.938=253.9(\mathrm{~g})$
Answer: 253.9 g

