Answer on Question \#77313, Chemistry / General Chemistry

Calculate wave number of first and second spectral line in the lyman series of H - atom

Solution

The Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from $n \geq 2$ to $n=1$ (where n is the principal quantum number), the lowest energy level of the electron. The transitions are named sequentially by Greek letters: from $n=2$ to $n=1$ is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman.

To find wavenumber $\tilde{v}=\frac{1}{\lambda}$ we should use the Rydberg equation for Lyman series, i.e. $\mathrm{n}_{1}=1$:

$$
\begin{aligned}
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
& \frac{1}{\lambda}=R_{H}\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right)
\end{aligned}
$$

where $R_{H}=1.0968 \times 10^{7} \mathrm{~m}^{-1}=1.0968 \times 10^{5} \mathrm{~cm}^{-1}$
Then

$$
\tilde{v}=\frac{1}{\lambda}=R_{H}\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

For Lyman-alpha line Ly α (from $n=2$ to $n=1$):

$$
\tilde{v}(L y \alpha)=\frac{1}{\lambda}=1.0968 \times 10^{5} \mathrm{~cm}^{-1}\left(\frac{1}{1^{2}}-\frac{1}{2_{2}^{2}}\right)=8.226 \times 10^{4} \mathrm{~cm}^{-1}
$$

For Lyman-beta line Ly β (from $n=3$ to $n=1$):

$$
\tilde{v}(L y \beta)=\frac{1}{\lambda}=1.0968 \times 10^{5} \mathrm{~cm}^{-1}\left(\frac{1}{1^{2}}-\frac{1}{3_{2}^{2}}\right)=9.7493 \times 10^{4} \mathrm{~cm}^{-1}
$$

Answer: 1) $\tilde{v}(L y \alpha)=8.226 \times 10^{4} \mathrm{~cm}^{-1}$
2) $\tilde{v}(L y \beta)=9.7493 \times 10^{4} \mathrm{~cm}^{-1}$

