Question:
Calculate the entropy change when 36 g of ice is heated at standard pressure from 230 K to 320 K . Take the molar heat
capacities at constant pressure, Cp, m, of water and ice to be
75.3 and $37.7 \mathrm{~J} \mathrm{~mol} 1-1$ respectively, and the molar enthalpy
of fusion of ice to be 6.02 kJ mol-^. The molar mass of water is $18.0 \mathrm{~g} \mathrm{~mol}-1$, and ice melts at a temperature of 273.15 K 。

Solution:

From the definition of entropy. The change in entropy, where is the molar heat capacity at constant pressure.
Δ Svap $=\Delta$ HvapTb $=40.63 \times 1000 \mathrm{~J} / \mathrm{mol} 373 \mathrm{~K}=109 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
So, Entropy change for evaporation of 36 g of water $=109 \times 3618=218 \mathrm{~J} / \mathrm{K}$.

