Answer on Question #76951, Chemistry / General Chemistry

How many milliliters of Cl_2 gas, measured at 21.5 °C and 763 torr, are needed to react with 16.0 mL of 0.242 M NaI if the I⁻ is oxidized to IO_3^- and the Cl_2 is reduced to Cl^- ?

Solution

Nal + $3Cl_2 + 3H_2O \rightarrow NalO_3 + 6HCl$

According to the equation reaction 1 mol of NaI requires 3 mols of Cl₂. Find the amount of NaI:

v_{Nal} = 0.242 × 0.016 = 0.003872 (mol)

v_{Cl2} = 0.003872 × 3 = 0.011616 (mol)

Find the volume of chlorine:

 $V = \frac{vRT}{P}$; T = 294.5 K; R = 62.363 L×torr×K⁻¹×mol⁻¹

V = $\frac{0.011616 \times 62.363 \times 294.5}{763}$ = 0.2796 (L) = **279.6 (ml)**

Answer

279.6 ml of Cl_2 gas, measured at 21.5 °C and 763 torr, are needed to react with 16.0 mL of 0.242 M Nal.

Answer provided by AssignmentExpert.com