Question # 76942 - Chemistry - General Chemistry

A 19.91 g sample of $Mo_2O_3(s)$ is converted completely to another molybdenum oxide by adding oxygen. The new oxide has a mass of 23.90 g. Add subscripts below to correctly identify the empirical formula of the new oxide.

Answer

 $n(Mo_2O_3) = m(Mo_2O_3)/M(Mo_2O_3) = 19.91 / 240g = 0.083 mol Mo_2O_3$

 $M(Mo_2O_3) = 240 \text{ g/mol}$

 $n(O) = (m(Mo_xO_y) - m(Mo_2O_3))/M(O) = (23.90 - 19.91)/16 = 0.249 mol O$

M(O) = 16 g/mol

Number oxygen atoms are added:

 $N(O) = n(O)/n(Mo_2O_3) = 0.249 / 0.083 = 3$

So for every molecule of Mo_2O_3 , 3 oxygen atoms are added, so the new formula is: Mo_2O_6 , which makes the empirical formula MoO_3 .

Answer provided by AssignmentExpert.com