Answer on Question #76633, Chemistry / General Chemistry

Which element will exhibit the photoelectric effect with light of the longest wavelength?

- a. K
- b. Rb
- c. Mg
- d. Ca

Solution

To answer this question we should use the equation for photoelectric effect:

$$E_{photon} = KE_{electron} + \Phi$$

 Φ - is work function

Find work functions of K, Rb, Mg, Ca from the table data:

Metal	Work function,⊕ (eV)	Work function, Φ,(J)
K	2.29	3.67·10 ⁻¹⁹
Rb	2.261	3.62·10 ⁻¹⁹
Mg	3.66	5.86·10 ⁻¹⁹
Ca	2.87	4.60·10 ⁻¹⁹

$$E_{photon} = h v = \frac{hc}{\lambda}$$

Then

$$\frac{hc}{\lambda} = KE_{electron} + \Phi$$

To observe photoelectric effect treshold should be obtained, i.e $\lambda = \lambda_0$, where KE_{electron} =0

$$\frac{hc}{\lambda} = \Phi \implies \lambda = \frac{hc}{\Phi}$$

$$\lambda(K) = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{3.67 \times 10^{-19}} = 5.42 \times 10^{-7} \text{(m)} = 542 \text{ (nm)}$$

$$\lambda(Rb) = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{3.62 \times 10^{-19}} = 5.49 \times 10^{-7} \text{(m)} = 549 \text{ (nm)}$$

$$\lambda(Mg) = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5.86 \times 10^{-19}} = 3.39 \times 10^{-7} \text{(m)} = 339 \text{ (nm)}$$

$$\lambda(Ca) = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{4.60 \times 10^{-19}} = 4.32 \times 10^{-7} \text{(m)} = 432 \text{ (nm)}$$

We can see from these calculations that Rb will exhibit the photoelectric effect with light of the longest wavelength $\lambda(\text{Rb})$ =549 nm.

Answer: b. Rb

Answer provided by https://www.AssignmentExpert.com