Task\#76556

In a reaction it was found that 3.0 g of a metal ${ }^{*} \mathrm{X}^{*}$ was oxidized by $25.0 \mathrm{~cm}^{\mathbf{3}}$ of 0.10 mol dm ${ }^{3} \mathrm{~K} 2 \mathrm{Cr} 2 \mathrm{O} 2$ under acidic conditions.
(i) Deduce the mole of ratio between ${ }^{*} \mathrm{X} *$ and $\mathrm{Cr} 2 \mathrm{O}^{2}$ - ion.
(ii) write a balanced equation of the redox reaction.
(iii) Give the oxidation numbers of chromium and * X * in both their reduced and oxidized forms.[Molar mass of $* \mathbf{X} *=200.6$

Solution:Reduction: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$;
[Equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ molecular weight $/ \mathbf{6}=\mathrm{M} / 6$],
Where, $\mathrm{M}=$ Molecular weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Oxidation: $\mathrm{X}=\mathrm{X}^{\mathrm{nt}}+\mathrm{ne}$
[Equivalent weight of $\mathrm{X}=200.6 / \mathrm{n}$]
(i)Concentration of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ Solution $=0.10 \mathrm{~mol} \mathrm{dm}{ }^{3}=0.1 \mathrm{~mol} / \mathrm{lit}=(0.1 \mathrm{x} \mathrm{M}) \mathrm{g} / \mathrm{lit}=0.1 \times 6$ gm-eqivalent $/ \mathrm{lit}=0.6$ Normal $=0.6(\mathrm{~N})$; $\quad\left[1 \mathrm{dm}^{3}=1000 \mathrm{cc}=1 \mathrm{lit}\right]$

So, 1000cc 1(N) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution $=200.6 / \mathrm{ngm}$ of X ;
1cc $1(\mathrm{~N}) \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution $=0.2006 / \mathrm{ngm}$ of X ;
$25 \mathrm{cc} 0.6(\mathrm{~N}) \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution $=0.2006 \times 25 \mathrm{x} 0.6 / \mathrm{n}$ of X ;
From given condition ,

$$
\begin{aligned}
& 0.2006 \times 25 \times 0.6 / \mathrm{n}=3 \\
& \mathrm{n}=0.2006 \times 25 \times 06 / 3=1.003 \\
& \mathrm{n}=1
\end{aligned}
$$

Amount of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in $25 \mathrm{ml} 0.10 \mathrm{~mol} /$ lit solution $=\frac{0.1 \times 25}{1000} \mathrm{~mol}=2.5 \mathrm{X1} 0^{-3} \mathrm{~mol}$
Amount of X in solution $=\frac{3 \mathrm{~g}}{200.6 \mathrm{~g} / \mathrm{mol}}=0.014955 \mathrm{~mol}$
Mol ratio between X and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{0.014955}{2.5 \times 10-3}=6$;
That means for one mol of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ oxidises 6 mols of metal X .
(ii) Reduction: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$;

Oxidation: $\mathrm{X}=\mathrm{X}^{+}+\mathrm{e}$;
Balanced equation of the redox reaction: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{X}=2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{X}^{+}$;
(iii) Oxidation number of Chromium in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (oxidised form) $=\mathrm{x}=6$, and in reduced form $\left(\mathrm{Cr}^{3+}\right)=3$
$[2 x+7(-2)=-2$, or, $x=6]$, metal $($ reduced form,$X)=0$, oxidised form $\left(X^{+}\right)=1 ;$

