Task#76556

In a reaction it was found that 3.0g of a metal *X* was oxidized by 25.0 cm³ of 0.10 mol dm-³ K2 Cr2 O2 under acidic conditions.

- (i) Deduce the mole of ratio between *X* and Cr2 O72- ion.
- (ii) write a balanced equation of the redox reaction.
- (iii) Give the oxidation numbers of chromium and ${}^*X^*$ in both their reduced and oxidized forms.[Molar mass of ${}^*X^* = 200.6$

Solution:Reduction:
$$Cr_2O_7^{2-} + 14 \text{ H}^+ + 6e = 2Cr^{3+} + 7H_2O_3$$

[Equivalent weight of K_2 Cr_2O_7 = molecular weight /6 =M/6],

Where, M=Molecular weight of K₂ Cr₂O₇

Oxidation:
$$X = X^{n+} + ne$$

[Equivalent weight of X = 200.6/n]

(i)Concentration of
$$K_2Cr_2O_7$$
 Solution =0.10 mol dm-³ = 0.1mol/lit = (0.1x M)g/lit =0.1x6 gm-eqivalent/lit= 0.6 Normal =0.6(N); [1dm³ =1000cc = 1lit]

So,
$$1000cc 1(N) K_2Cr_2O_7$$
 solution = $200.6/n \text{ gm of } X$;

1cc 1(N)
$$K_2Cr_2O_7$$
 solution =0.2006/n gm of X;

25cc
$$0.6(N)$$
 K₂Cr₂O₇ solution = 0.2006 x25x $0.6/n$ of X;

From given condition,

Amount of $K_2Cr_2O_7$ in 25ml 0.10 mol/lit solution $=\frac{0.1 \times 25}{1000}$ mol $= 2.5 \times 10^{-3}$ mol

Amount of X in solution
$$=\frac{3g}{200.6g/mol} = 0.014955$$
 mol

Mol ratio between X and
$$K_2Cr_2O_7 = \frac{0.014955}{2.5 \times 10^{-3}} = 6$$
;

That means for one mol of K₂Cr₂O₇ oxidises 6mols of metal X.

(ii) Reduction:
$$Cr_2O_7^{2-} + 14 \text{ H}^+ + 6e = 2Cr^{3+} + 7H_2O$$
:

Oxidation:
$$X = X^+ + e$$
;

Balanced equation of the redox reaction: $Cr_2O_7^{2-} + 14 \text{ H}^+ + 6X = 2Cr^{3+} + 7H_2O + 6X^+$;

(iii) Oxidation number of Chromium in $Cr_2O_7^{2-}$ (oxidised form)=x=6, and in reduced form(Cr^{3+})=3

$$[2x + 7(-2) = -2$$
, or, $x = 6$], metal (reduced form, X) = 0, oxidised form (X^+)=1;