Answer on Question #76550 - Chemistry - General Chemistry

Question:

A solution is tested with a pH meter and a pH of 3.95 is recorded. Calculate the [H3O+] and the [OH-] for this solution

Solution:

The common equation is:

$$pH + pOH = 14$$

 $pH = 3.95$
 $pOH = 14 - 3.95 = 10.05$

To get the value of $[OH^-]$ we have to use our knowledge that pOH is a negative logarithm of $[OH^-]$:

$$pOH = -\log [OH^{-}]$$
$$[OH^{-}] = 10^{-pOH}$$
$$[OH^{-}] = 10^{-10.05} = 8.9 \cdot 10^{-11}$$

The equilibrium constant of water is equal to:

$$K_w = [H_3O^+][OH^-] = 1 \cdot 10^{-14}$$

By this way equilibrium concentration of [H3O⁺] will be:

$$[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1 \cdot 10^{-14}}{8.9 \cdot 10^{-11}} = 1.1 \cdot 10^{-4}$$

Answer:

The concentrations of [H3O⁺] and [OH⁻] for solution are $1.1 \cdot 10^{-4}$ and $8.9 \cdot 10^{-11}$ respectively.

Answer provided by AssignmentExpert.com