Answer on Question #75911 - Chemistry - General Chemistry

Task:

Calculate the grams of oxygen gas present in a 2.50 L sample kept at 1.66 atm and a temperature of 10.0° C.

Solution:

We use the Ideal Gas equation: PV=nRT,

and the appropriate gas constant R=0.0821 L*atm*K⁻¹*mol⁻¹.

$$T = 10.0$$
°C + 273.15 = 283.15 K.

$$n(O_2) = m(O_2) / M(O_2)$$
.

$$M(O_2) = 2*Ar(O) = 2*16 = 32 g/mol.$$

Then,

$$PV = nRT$$
:

$$PV = \frac{m}{M}RT; \implies PVM = mRT;$$

$$m(O_2) = \frac{PVM(O_2)}{RT} = \frac{1.66 atm * 2.50L * 32 g * mol^{-1}}{0.0821L * atm * K^{-1} * mol^{-1} * 283.15 K} = 5.71 g$$

$$m(O_2) = 5.71g$$

Answer: 5.71 g of oxygen gas present.

Answer provided by AssignmentExpert.com