NConsider the reaction to produce ammonia shown below.

$$N2 (g) + 3H2 (g) *) 2NH3 (g) KP = 44 at 473 K$$

Initially a mixture of N2, H2, and NH3 have the following pressures.

PN2 = 10atm PH2 = 30atm PNH3 = 3atm

What is the pressure of each gas once equilibrium is established?

Solution

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

$$Kp = \frac{P_{NH3}^2}{P_{N2} \cdot P_{H2}^3}$$
;

where P_{NH3} , P_{N2} , P_{H2} pressures of NH_3 , N_2 and H_2 when equilibrium is established.

Let x be the change in pressure for N_2 . Then the change in pressure for H_2 is 3x (we can see from the chemical equation that the coefficient ratio of N_2 and H_2 is 1:3), the change in pressure of N_3 is 2x (we can see from the chemical equation that the coefficient ratio of N_2 and N_3 is 1:2).

Let's express pressures of gases when equilibrium is established in the form of table:

	N ₂ , atm	H ₂ , atm	NH ₃ ,atm
Initial pressure	10	30	3
Change in pressure	-X	-3x	+2x
Pressure of gases	10-x	30-3x	3+2x
when equilibrium is			
established			

Comment: for N_2 and H_2 change in pressure is negative as pressures of these gases decrease, for NH_3 change in pressure is positive as it's pressure increase.

Solve the equation and find x:

$$Kp = \frac{P_{NH3}^{2}}{P_{N2} \cdot P_{H2}^{3}};$$

$$44 = \frac{(3+2x)^{2}}{(10-x) \cdot (30-3x)^{3}};$$

$$44(10-x) \cdot (30-3x)^{3} = (3+2x)^{2};$$

$$44 (10-x) \cdot 3^{3} (10-x)^{3} = (3+2x)^{2};$$

$$1188(10-x)^{4} - (3+2x)^{2} = 0;$$

$$34.47^{2} (10-x)^{4} - (3+2x)^{2} = 0;$$

$$(34.47(10-x)^{2} - (3+2x)) \cdot (34.47(10-x)^{2} + (3+2x)) = 0;$$

$$34.47(10-x)^2 - (3+2x) = 0$$
 or $34.47(10-x)^2 + (3+2x) = 0$.

Find roots of the first equation:

$$34.47(10-x)^2 - (3+2x)=0$$
;

$$34.47(100-20x+x^2) -3-2x = 0;$$

$$3447 - 689.4x + 34.47x^2 - 3 - 2x = 0$$

$$34.47x^2 - 691.4x + 3444 = 0$$

$$D = (-691.4)^2 - 4.34.47.3444 = 478033.96 - 474858.72 = 3175.24 = 56.35^2$$
;

$$x_1 = (691.4-56.35)/2 \cdot 34.47 = 9.21;$$

$$x_2 = (691.4 + 56.35)/2 \cdot 34.47 = 10.85.$$

Find roots of the second equation:

$$34.47(10-x)^2 + (3+2x) = 0;$$

$$34.47(100-20x+x^2) + 3+2x = 0;$$

$$3447 - 689.4x + 34.47x^2 + 3 + 2x = 0$$

$$34.47x^2 - 687.4x + 3450 = 0$$

$$D = (-687.4)^2 - 4.34.47.3450 = 472518.76 - 475686 = -3167.24;$$

D<0, the second equation has no roots.

Analysis of the roots: $x_1 = 9.21$; $x_2 = 10.85$. Initial pressure of N_2 10 atm, then P_{N2} when equilibrium is established should be positive: $P_{N2} = 10$ -x= 10-9.21= 0.79 (atm)(compare: 10-10.85 = -0.85). We should use x=9.21.

$$P_{H2}$$
= 30-3x= 30-3·9.21=2.37 (atm).

$$P_{NH3} = 3+2x = 3+2.9.21 = 21.42$$
 (atm).

Answer: $P_{N2} = 0.79$ atm, $P_{H2} = 2.37$ atm, $P_{NH3} = 21.42$ atm.