A solution of 0,64g of adrenaline in 36 of carbon tettrachloride causes an elevation of 49°C in the boiling point What is the molas mass of the adrenaline? Show the solution.

Solution

To find molar mass of Adrenaline we should use formula (Clausius-Clapeyron relation and Raoult's law together):

 $\Delta T_b = i K_b b_B$;

 ΔT_b - the boiling point elevation;

K_B - ebullioscopic constant;

b_B - molality of the solution;

I – number of particles the solute splits into of forms when dissolved.

 $K_b(CCl_4) = 5.03 \text{ K-kg/mol};$

i for adrenaline =1 (does not dissociate in CCl₄);

 $b_B = n_{solute}/m_{solvent} = m_{solute}/M_{solute} \cdot m_{solvent}$

We should use $m_{solvent}$ in kg, then $b_B = 1000 \cdot m_{solute}/M_{solute} \cdot m_{solvent}$

The final formula is:

 $\Delta T_b = i K_b 1000 \cdot m_{solute} / M_{solute} \cdot m_{solvent}$.

 $49 = 1.5.03 \cdot 1000 \cdot 0.64 / M_{adrenaline} \cdot 36;$

M_{adrenaline} = 1.8249 (g/mole) But this can not be true!

Let's check up this: suppose we know molar mass of adrenaline (we can count it), let's find the boiling point elevation:

 $M(C_9H_{13}NO_3) = 12.01.9 + 1.01.13 + 14.01 + 16.00.3 = 183.23 (g/mol);$

 $\Delta T_b = 1.5.03 \cdot 1000 \cdot 0.64 / 183.23 \cdot 36;$

 $\Delta T_b = 0.49$ °C.

So, we see, that the solution of 0,64g of adrenaline in 36 of carbon tettrachloride causes an elevation of **0.49°C** in the boiling point!

Therefore there is a mistake in the task: 0.49 °C, not 49°C.

The solution for the task is:

 $\Delta T_b = i K_b 1000 \cdot m_{solute} / M_{solute} \cdot m_{solvent}$.

 $0.49 = 1.5.03 \cdot 1000.0.64/M_{adrenaline} \cdot 36;$

M_{adrenaline} = 182.49 g/mole

Answer: a mistake in the task has place: not 49°C but 0.49°C

If $\Delta T = 0.49$ °C then $M_{adrenaline} = 182.49$ g/mole