
What role does water play in the reaction involved in procedure no. 1? In a dry watch glass, mix a pinch of each crystal lead (II) acetate [Pb(C2H302)2] and potassium chromate (K2CrO4). pour the mixture on a piece of light green colored paper. Try to separate the crystals by agitating the mixture. Has there been an reaction? Return the crystals into the watch glass, Add distilled water and stir. observe.

Solution

We have two ionic substances: $Pb(CH_3COO)_2$ and K_2CrO_4 . The reaction between ionic substances takes place when we have free ions, that means, that the ionic structure of a substance (crystal) should be broken. There should be forces that broke our ionic crystal into free ions.

When we mix crystal lead (II) acetate $Pb(CH_3COO)_2$ and potassium chromate K_2CrO_4 (without water) no reaction takes place because we have no forces that break ionic crystal structures of these two salts. No free ions obtained. Therefore ions that are bounded in one ionic substance can not react with the ions in the other ionic substance to give new substances.

When we add distilled water to the mixture of salts the process of dissolution takes place. That means that the water molecules (which are polar molecules: have negatively and positively charged sides) come to the ionic crystal (that have positively and negatively charged ions) and break ionic bonds between ions of a substance. If the charge of an ion is negative water molecules turn to this ion with their positively charged side (for example : Pb^{2+} , K^+ , Na^+). If the charge of an ion is positive water molecules turn to this ion with their positivels turn to this ion with their start to this ion with their charge of an ion is positive water molecules turn to this ion with their molecules turn to this ion with their negative charge side (for example: CH_3COO^- , CrO_4^{2-} , CI^-). Then we get hydrated ions, which are free ions, that means they can react with each other to form a new substance.

This process takes place when the salts used are soluble in water (we should check up this in the solubility table).

Solubility Table Common Ionic Compounds

			iroup	1	Group 2			Transition Metals					
	NH."	U"	Na*	K*	Mg2+	Ca2+	Ba ²⁺	Al1-	Fe ³⁺	Cu2+	Ag*	Zn ²⁺	Pb2.
F	sol	sol	sol	sol	insel	insel	ti soi	sol	al col	sol	sol	sol	inso
CI-	sol	sel	sol	sel	sol	sel	sel	sol	set	sol	insol	sol	sel
Br	sol	sel	sol	sel	sol	sel	sol	sol	sol	sol	inset	sol	si se
r	sol	sol	sol	sol	sol	sol	sol	los			insol	sol	inso
ON-	sol	sol	sol	sel	insel	st sal	sol	insol	insol	insol		insol	inse
\$2-	sol	sol	sol	sol		si sui	sui		insel	Insol	insol	imol	heso
\$0,2-	sol	sol	sol	sol	sol	tos la	Insol	sol	sol	sol	ion in	sol	inse
C0,2-	sol	sol	siel	sol	insol	insol	insol			si sei	insol	insol	ites of
NO ₂ *	sol	loc	sol	sel	sol	sol	sol	sol	sol	loc	sol	sol	sel
P0,3-	sol	insol	sol	sol	imol	insol	insol	insol	insol	insol	insol	innol	inco
Cr0,2-	sol	501	sel	set	sol	set	Insel		insel	insol	insol	imol	into
CH,CO,"	sol	sol	sol	sol	sol	sol	80	si sel	sol	sol	sol	los	ter

We can see that $Pb(CH_3COO)_2$ and K_2CrO_4 are soluble in water. When in water these salts dissociate into ions, that are evenly spread in the volume of solvent (diffusion process).

 $Pb(CH_3COO)_2 \rightarrow Pb^{2+} + 2CH_3COO^-;$

 $\mathrm{K_{2}CrO_{4}} \rightarrow \mathrm{2K^{+}+CrO_{4}^{\ 2-}}.$

Ions Pb^{2+} and CrO_4^{2-} react with each other and give salt $PbCrO_4$ that is not soluble in water (table of solubility). Yellow crystals of $PbCrO_4$ precipitate.

 $Pb(CH_3COO)_2$ (aq) + K_2CrO_4 (aq) = $2CH_3COOK(aq) + PbCrO_4$ (s)

You can see this process on the video: <u>https://www.youtube.com/watch?v=Jt0eGtHHV04</u>

(on the video $Pb(NO_3)_2$ is used instead of $Pb(CH_3COO)_2$, but the observations are the same).

Answer: the role of water is: 1. to break ionic bounds in the ionic crystal to get free ions;

2. to provide the diffusion process (free ions are evenly spread in

the volume of solvent).

Answer provided by AssignmentExpert.com