A student reacted 2.4 grams of copper (II) oxide (CuO) with hot sulfuric acid. She made 5.21 g of copper (II) sulfate (CuSO4). Calculate the percent yield.

Solution

 $CuO + H_2SO_4 = CuSO_4 + H_2O$

- Find chemical amount of copper (II) oxide (CuO): n= m/M; M(CuO) = 64+16=80 (g/mol); n(CuO) = 2.4/80 = 0.03 (mole).
- Find chemical amount of copper (II) sulfate (CuSO₄): according to equation 1 mole of CuO gives 1 mole of CuSO₄, i.e. n(CuSO₄)=n(CuO); n(CuSO₄)= 0.03 mole.
- 3. Find theoretical mass of CuSO₄:

```
m= M·n;
M(CuSO<sub>4</sub>)= 64+32+16·4= 160 (g/mol);
m(CuSO<sub>4</sub>) = 160·0.03= 4.8 (g);
m_{\text{theretical}} = 4.8 \text{ g}.
```

4. Actual mass of CuSO₄:

```
m(CuSO<sub>4</sub>)= 5.21 g.
```

We can see that actual mass of $CuSO_4$ (5.21 g) is more than theoretical mass of $CuSO_4(4.8 \text{ g})$ what is impossible. Therefore a mistake could be in the task.

a) For example, if mass of copper (II) oxide (CuO) is 4.2, the task could have a solution:
 n(CuO)= 4.2/80 = 0.0525 (mole);

n(CuO) = n(CuSO₄) = 0.0525 (mole);

 $m_{theretical}$ (CuSO₄)= 160.0.525=8.4 (g).

Theoretical mass of $CuSO_4$ (8.4 g) is more than actual mass of $CuSO_4$ (5.21 g), therefore we could find the percent yield:

 $\eta = m_{actual}/m_{theoretical};$

 η (CuSO₄) = 5.21/8.4 = 0.62 or 62 %.

b) Also the task could have a solution if the actual mass of CuSO₄ is less than theoretical (4.8 g). For example, if m_{actual} (CuSO₄) =4.6 g the percent yield is: η (CuSO₄) = 4.6/4.8 = 0.96 or 96 %.

Answer: a mistake in the task has place. The answers could be a) 62%; b) 96 %.