Answer on Question \# 73566-Chemistry - Physical Chemistry

The vapor pressure of a pure water at $50^{\circ} \mathrm{C}$ is 0.1217 atm . The vapor pressure of a solution containing 90 g of a non-volatile organic compound in 1000 g of water at the same temperature is 0.1184 atm . Calculate the molar mass of the organic compound by assuming the solution is dilute.

Solution

The vapor pressure of water solution is proportional to its mole fraction (Rauolt's law):
$P=X \cdot P^{0}$,
Where P^{0} is the vapor pressure of the pure solvent.
Therefore, the mole fraction of water in the solution is:
$X=P / P^{0}=0.1184$ atm $/ 0.1217$ atm $=0.973$.
Then the mole fraction of the non-volatile organic compound is $1-0.973=0.027$.
Converting the mass of water to moles:
$1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~mol} \mathrm{H} 2 \mathrm{O} / 18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)=55.56 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$.
Amounts of substances are proportional to its mole fraction, therefore the amount of the nonvolatile organic compound (n) is:
55.66/0.973 =n/0.027,
$n=0.027 \cdot 55.66 / 0.973=1.545$ (moles).
The molar mass of the non-volatile organic compound is:
$90 \mathrm{~g} / 1.545 \mathrm{~mol}=58 \mathrm{~g} / \mathrm{mol}$.

Answer: $58 \mathrm{~g} / \mathrm{mol}$.

Answer provided by https://www.AssignmentExpert.com

