Question \#73565, Chemistry / Physical Chemistry / Completed

The vapor pressure of pure water at 50C is 0.1217 atm. The vapor pressure of a solution containing 90 g of a non-volatile organic compound in 1000 g of water at the same temperature is 0.1184 atm. Calculate the molar mass of the organic compound by assuming the solution is dilute.

Solution

$\Delta \mathrm{p}=0.1217 \mathrm{~atm}-0.1184 \mathrm{~atm}=0.0033 \mathrm{~atm}$
$\Delta \mathrm{p} / \mathrm{p}=\mathrm{n}_{\mathrm{x}} / \mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\text {water }}$
So $n_{x} / n_{x}+n_{\text {water }}=\Delta p / p=0.0033$ atm $/ 0.1217$ atm $=0.027$
$n_{\text {water }}=1000 \mathrm{~g} / 18 \mathrm{~g} / \mathrm{mol}=55.56 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{x}} \approx 1.55 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{x}}=\mathrm{m} / \mathrm{M} ; \mathrm{M}_{\mathrm{x}}=\mathrm{m} / \mathrm{n}_{\mathrm{x}}=90 \mathrm{~g} / 1.55 \mathrm{~mol} \approx 58.12 \mathrm{~g} / \mathrm{mol}$.

