Answer on Question #73551, **Chemistry / General Chemistry :**

The enthalpy change (Δ H) and entropy change(Δ S) for the reaction of 30.54 kj mol⁻¹ and 0.06 kj mol⁻¹ respectively. Calculate the temperature at equilibrium. Also predict the spontaneity below the temperature at which Gibb's free energy is zero. Justify your answer with a valid reason.

Solution.

 $\Delta H = 30.54 kj / mol$ $\Delta S = 0.06 kj / mol \cdot K$ $\Delta G = 0$

T-?

Gibb's free energy is: $\Delta G = \Delta H - T \cdot \Delta S$ When $\Delta G = 0$, and: $0 = \Delta H - T \cdot \Delta S$ $T \cdot \Delta S = \Delta H$ $T = \frac{\Delta H}{\Delta S} = \frac{30.54 kj / mol}{0.06 kj / mol \cdot K}$ T = 509KIf T > 509K: $\Delta H - T \cdot \Delta S < 0$ $\Delta G < 0$ Reaction with a positive Gibbs free energy will not proceed spontaneously.

When $\Delta G < 0$, the process is exergonic and will proceed spontaneously in the forward direction to

form more products.

Answer: T = 509K.

Answer provided by AssignmentExpert.com