Answer on Question # 73374 - Chemistry - General Chemistry

The vapor pressure of liquid aluminum is 400 mm Hg at 2.59×10^3 K. Assuming that its molar heat of vaporization is constant at 252 kJ/mol, the vapor pressure of liquid Al is mm Hg at a temperature of 2.62×10^3 K.

Solution

The Clausius-Clapeyron equation gives the variation of vapor pressure with temperature, assuming the value of the heat of vaporization to be constant over the temperature range in question. The two-point form of this equation is:

 $\ln(p_1/p_2) = (-\Delta H_{vap}/R)(1/T_1-1/T_2),$

where p_1 and p_2 are the vapor pressures of the substance at the Kelvin temperatures T1 and T2, respectively, ΔH_{vap} is the molar heat of vaporization of the substance, and R is the ideal gas constant.

Using the value of $8.314 \cdot 10^{-3}$ kJ/(mol·K) for R and substituting along with other givens into the above equation:

In(p₁/400 mm Hg)= [-252 kJ/mol /8.314·10⁻³ kJ/(mol·K)][1/(2.62×10³ K)-1/(2.59×10³ K)],

solving the equation for the unknown gives $p_1 = 457$ mm Hg.

Answer: 457 mm Hg.

Answer provided by AssignmentExpert.com