Answer on Question #73227, Chemistry / General Chemistry

The rate constant for the zeroth-order decomposition of NH_3 on a platinum surface at a given temperature is 3.63 $\times 10^{-6}$ M/s. If the initial concentration of NH_3 is 3.23×10^{-2} M, what is the concentration of NH_3 after 30.0 minutes?

Solution

Find how many seconds are in 30 minutes:

 $T = 30 \times 60 = 1800$ (s)

Find which amount of NH₃ will decompose after 30 minutes:

 $C_{dec} = 1800 \times 3.63 \times 10^{-6} = 6534 \times 10^{-6} = 0.65 \times 10^{-2}$ (M)

Find the concentration after 30 minutes

```
C = 3.23 \times 10^{-2} - 0.65 \times 10^{-2} = 2.58 \times 10^{-2} (M)
```

Answer

The concentration of NH₃ after 30.0 minutes is **2.58×10⁻² M.**

Answer provided by AssignmentExpert.com