Answer on Question \#72994-Chemistry - Physical Chemistry

Question:

Question 12 : A container with volume 71.9 ml contains water vapor at a pressure of 10.4 atm and a temperature of 465 oC . How many grams of the gas are in the container?
0.183 g
0.222 g
0.129 g
0.421 g

Solution:

Ideal gas law can be used to establish the link between the mass of the gas m, its volume V, temperature T and pressure p through the molar mass $M=18.01528 \cdot 10^{-3}\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)$:

$$
p V=n R T=>p V=\frac{m}{M} R T
$$

where n is the number of the moles of the gas and R is the ideal gas constant, 8.314($\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$).

$$
\begin{gathered}
m=\frac{p V M}{R T}, \\
m=\frac{10.4 \cdot 101325(\mathrm{~Pa}) \cdot 71.9 \cdot 10^{-6}\left(\mathrm{~m}^{3}\right) \cdot 18.01528 \cdot 10^{-3}\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)}{8.314\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \cdot(465+273.15)(\mathrm{K})} \\
m=2.22 \cdot 10^{-4} \mathrm{~kg}=0.222 \mathrm{~g}
\end{gathered}
$$

Answer: 0.222 g

