Answer on Question \# 72990-Chemistry - Physical Chemistry

Question 18 : A container with volume 71.9 ml contains water vapor at a pressure of 10.4 atm and a temperature of 4650 C . How many grams of the gas are in the container?
0.421 g
0.129 g
0.222 g
0.183 g

Solution

The mass of a gas can be calculated using the Ideal gas law:
$m=M P V /(R T)$,
where M is the molar mass, P is the pressure, V is the volume and T is a temperature (R is a universal gas constant).

Converting the values given to SI units:
$\mathrm{P}=10.4$ atm $(101325 \mathrm{~Pa} / \mathrm{atm})=1053780 \mathrm{~Pa}$,
$\mathrm{M}=18 \mathrm{~g} / \mathrm{mol}\left(\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}\right)$,
$\mathrm{V}=71.9 \mathrm{~mL}\left(1 \mathrm{~m}^{3} / 10^{6} \mathrm{~mL}\right)=7.19 \cdot 10^{-5} \mathrm{~m}^{3}$,
$\mathrm{T}=465{ }^{\circ} \mathrm{C}+273.15=738.15 \mathrm{~K}$.

Computing the mass using the Ideal gas law:
$m=\left(18 \cdot 1053780 \cdot 7.19 \cdot 10^{-5}\right) /(8.314 \cdot 738.15)=0.222 \mathrm{~g}$.
Answer: 0.222 g .

