Answer on Question #72857, Chemistry / General Chemistry

How much heat is required in kJ to convert 30.7 g of water at 97.5°C to steam at 105.5°C? The boiling point of water is 100.0°C, Cm for liquid water = 75.4 J/(mol•°C), Δ Hvap = 40.67 kJ/mol, and Cm for steam = 33.6 J/(mol•°C).

Solution

 $Q_{total} = Q_{liq} + Q_{vap} + Q_{st}$, where Q_{liq} – energy required to heat water from 97.5°C to 100°C ($\Delta T_1 = 2.5$ °C);

Q_{vap} -- energy required to evaporate water;

 Q_{st} -- energy required to heat steam from 100°C to 105.5°C (ΔT_2 = 5.5°C).

 $Q_{total} = Cm_{liq}v\Delta T_1 \times \Delta H_{vap}v \times Cm_{st}v\Delta T_2$

 $v_{water} = \frac{30.7}{18} = 1,71 \text{ (mol)}$

 $Q_{total} = 0.0754 \times 1.71 \times 2.5 + 40.67 \times 1.71 + 0.0336 \times 1.71 \times 5.5 = 70.18 \text{ kJ}$

Answer

70.18 kJ of heat are required to convert 30.7 g of water at 97.5°C to steam at 105.5°C.

Answer provided by AssignmentExpert.com