#72437 Chemistry, Other

1. The compound KCLO₃ decomposes according to the following equation

 $@KCLO_3 \rightarrow 2KCL + 3O_2$

- a) what is the mole ratio of $KCLO_3$ to O_2 in this reaction?
- b) How many moles of O_2 can be produced by letting 6.0 moles of KCLO₃ react based on the above equation?
- c) How many molecules of oxygen gas, O₂, are produced in question 1b?
- 2. Magnesium combines with chlorine, Cl₂ to form magnesium chloride, MgCl₂ during a synthesis reaction.
 - a) write a balanced chemical equation for the reaction.
 - b) How many moles of magnesium chloride can be produced with 3 moles of chlorine?

Answer:

1a. 2 KCLO₃ \rightarrow 2KCL + 3O₂

Mole ratio $KCLO_3$ to O_2 is 2 : 3

1b. n (O₂) = $3/2 \cdot n$ (KClO₃) = $3/2 \cdot 6 = 9$ moles

1c. 1 mole = $6.022 \cdot 10^{23}$ molecules

9 moles $\cdot 6.022 \cdot 10^{23}$ molecules = 54.198 $\cdot 10^{23}$ molecules

2a. Mg + Cl_2 = Mg Cl_2

 $n (MgCl_2) = n (Cl_2)$

2b. 3 moles of Cl_2 gives 3 moles of $MgCl_2$

Answer provided by AssignmentExpert.com