Answer on Question #72407 - Chemistry - General Chemistry

If a solution containing 36.533 g of mercury(II) acetate is allowed to react completely with a solution containing 10.872 g of sodium dichromate, how many grams of solid precipitate will be formed?

Solution:

Reaction of mercury(II) acetate with sodium dichromate: $Hg(CH3COO)_2 + Na_2Cr_2O_7 \rightarrow 2CH_3COONa + HgCr_2O_7 \downarrow$

First, we calculate the number of moles of each reagent:

 $n(Hg(CH3COO)_2) = m(Hg(CH3COO)_2)/M(Hg(CH3COO)_2)=36,533/319=0,114 mol$

 $n(Na_2Cr_2O_7) = m(Na_2Cr_2O_7)/M(Na_2Cr_2O_7)=10,872/262=0,0414 \text{ mol}$

We see that in our reaction Hg(CH3COO)₂ is an excess reagent, and Na₂Cr₂O₇ is a limiting reagent. The precipitate in our reaction is mercury dichromate, now we determine its mass through sodium dichromate.

M(HgCr₂O₇)=417 g/mol, means

 $m(HgCr_2O_7) = m(Na_2Cr_2O_7)x M(HgCr_2O_7)/M(Na_2Cr_2O_7) = 10,872x417/262 = 17,3 g$

Answer provided by AssignmentExpert.com