Question #70854

25 cm³ of a 0.1M KMnO₄ solution was added to 25 cm³ of a FeC₂O₄ solution. 12.5 cm³ of 0.2M Fe²⁺ solution was required to react with remaining amount of KMnO₄ after the above reaction. Determine the concentration of $C_2O_4^{2-}$ ions in the solution.

Solution

The following balanced redox reactions took place in the solution.

1)
$$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

2)
$$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^{+} --> 2Mn^{2+} + 10CO_2 + 8H_2O$$

- 1. $\frac{12.5 \times 0.2}{1000}$ = 0,0025 (mol) the amount of Fe²⁺ required to react with remaining amount of KMnO₄ after the reaction.
- 2. $\frac{0.0025}{5}$ = 0.0005 (mol) the remaining amount of KMnO₄ after the reaction.
- 3. $\frac{25\times0.1}{1000}$ = 0.0025 (mol) the initial amount of KMnO₄.
- **4.** 0.0025 0.0005 = 0.002 (mol) the amount of KMnO₄ reacted with FeC₂O₄.
- 5. $\frac{0.002 \times 2}{3}$ = 0.0013 (mol) -- the amount of MnO₄⁻ reacted with C₂O₄²⁻.
- 6. $\frac{0.0013\times5}{2}$ = 0.0033 (mol) -- the amount of $C_2O_4^{2-}$ in the initial solution.
- 7. $\frac{0.0033 \times 1000}{25}$ = 0.133 (mol/l) the molar concentration of C₂O₄²⁻ ions in the solution.

Answer

The concentration of $C_2O_4^{2-}$ ions in the solution is **0.133M**

Answer provided by https://www.AssignmentExpert.com