Answer on the question \#69582, Chemistry / Physical Chemistry

Question:

One mole of an ideal gas with $\mathrm{Cp}=(7 / 2) \mathrm{R}$ and $\mathrm{Cv}=(5 / 2) \mathrm{R}$ expands from $\mathrm{P} 1=8$ bar \& $\mathrm{T} 1=$ 600 K to $\mathrm{P} 2=1$ bar by each of the following paths?
(1) Constant volume. (2) Constant temperature. (3) Adiabatically. Assuming mechanical reversibility calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for each process

Solution:

1) Constant volume process:

$$
\begin{gathered}
W=-\int_{V_{1}}^{V_{2}} p d V=0 \\
Q=\int_{T_{1}}^{T_{2}} C_{V} d T=C_{V}\left(T_{2}-T_{1}\right)
\end{gathered}
$$

Let's find the final temperature :

$$
\begin{gathered}
\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\
T_{2}=\frac{p_{2} \cdot T_{1}}{p_{1}}=\frac{1 \mathrm{bar} \cdot 600 \mathrm{~K}}{8 \mathrm{bar}}=75 \mathrm{~K}
\end{gathered}
$$

Thus, heat is:

$$
Q=\frac{5}{2} \cdot 8.314 \cdot(75-600)=-10.91 k J
$$

Change in internal energy is :

$$
\Delta U=Q+W=-10.91 k J
$$

Change in enthalpy of ideal gas at constant volume is:

$$
\begin{gathered}
\Delta H=Q+V \Delta P=-10.91 \mathrm{~kJ}+\frac{R T_{1}}{P_{1}}\left(P_{2}-P_{1}\right) \\
=-10.91 \mathrm{~kJ}+\frac{8.314 \mathrm{~J} / \mathrm{K} \cdot 600 \mathrm{~K}}{8 \mathrm{bar}}(1 \mathrm{bar}-8 \mathrm{bar}) \\
=-10.91 \mathrm{~kJ}-4.36 \mathrm{~kJ}=-15.27 \mathrm{~kJ}
\end{gathered}
$$

2) Constant temperature process:

Work done in the process :

$$
W=-\int_{V_{1}}^{V_{2}} p d V=n R T \ln \frac{p_{2}}{p_{1}}=8.314 \frac{\mathrm{~J}}{\mathrm{~K}} \cdot 600 \mathrm{~K} \cdot \ln \left(\frac{1}{8}\right)=-10.37 \mathrm{~kJ}
$$

As for ideal gas, it's internal energy change and enthalpy chage are zero as the temperature is constant:

$$
\Delta U=\Delta H=0
$$

Then, heat change is :

$$
Q=\Delta U-W=10.37 \mathrm{~kJ}
$$

3) Adiabatic process :

Change in heat is zero :

$$
Q=0
$$

Thus, internal energy is equal to work :

$$
\Delta U=W=\int_{V_{1}}^{V_{2}} P d V=\frac{n R}{\gamma-1}\left(T_{2}-T_{1}\right)
$$

where $\gamma=\frac{C_{p}}{C_{V}}=\frac{7}{5}=1.4$.
Let's find the final temperature :

$$
\begin{gathered}
T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}=331.2 \mathrm{~K} \\
\Delta U=W=\frac{8.314 \mathrm{~J} / \mathrm{K}}{1.4-1}(331.2 \mathrm{~K}-600 \mathrm{~K})=-5.59 \mathrm{~kJ}
\end{gathered}
$$

Enthalpy of the process is :

$$
\Delta H=n C_{P} \Delta T=\frac{7}{2} \cdot \frac{8.314 \mathrm{~J}}{K} \cdot(331.2 \mathrm{~K}-600 \mathrm{~K})=-7.82 \mathrm{~kJ}
$$

Answer :

(1) 0 ; -10 . 91 kJ ; -10.91 kJ ; -15.27 kJ
(2) $-10.37 \mathrm{~kJ} ; 10.37 \mathrm{~kJ} ; 0 ; 0$
(3) $-5.59 \mathrm{~kJ} ; 0 ;-5.59 \mathrm{~kJ} ;-7.82 \mathrm{~kJ}$

