Answer on the question \#69581, Chemistry / Physical Chemistry

Question:

One mol of an ideal gas with initial volume of 1 m 3 at 50 K \& 2bar undergoes a four steps mechanically reversible cycle in a closed system?

In step 1-2 the volume is increasing to 5 m 3 at a constant pressure of 2bar; in step 2-3, pressure decreases at constant volume to 1 bar and a temp of 100 K in step 3-4 the pressure increases to 10 bar by an isothermal process; and in step 4-1 the gas return by constant volume process to initial state. * Calculate $\mathrm{Q}, \mathrm{W}, \Delta \mathrm{U}$, and $\Delta \mathrm{H}$ for each step of the cycle. Take $C v=3 / 2 R ; C P=5 / 2 R$

Answer:

Applying ideal gas law, we can check the initial state:

$$
\begin{gathered}
p V=n R T \\
2 \mathrm{bar} \cdot 1 \mathrm{~m}^{3}=1 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 50 \mathrm{~K} \\
2 \cdot 10^{5} \mathrm{~Pa} \cdot 1 \mathrm{~m}^{3}=1 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 50 \mathrm{~K} \\
2 \cdot 10^{5} \mathrm{~J}=415.7 \mathrm{~J}
\end{gathered}
$$

Obviously, there is a mistake in the initial state of the system. However, we can still solve the problem, assuming 200000/415.7 mol of ideal gas:

$$
n=481.1 \mathrm{~mol}
$$

The first step 1-2 of the cycle is isobaric expansion:

$$
Q=n C_{P} \Delta T=481.1 \mathrm{~mol} \cdot \frac{5}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}} \cdot \Delta T
$$

Let's find the change in temperature:

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} ; T_{2}=\frac{V_{2} \cdot T_{1}}{V_{1}}=\frac{5 m^{3} \cdot 50 \mathrm{~K}}{1 m^{3}}=250 \mathrm{~K} \\
\Delta T=250 \mathrm{~K}-50 \mathrm{~K}=200 \mathrm{~K}
\end{gathered}
$$

Thus, heat absorbed by the system is:

$$
Q=2 \cdot 10^{6} J
$$

The work of the process is:

$$
W=-\int_{V_{1}}^{V_{2}} P d V=-2 \cdot 10^{5} \mathrm{~Pa} \cdot\left(5-1 \mathrm{~m}^{3}\right)=-8 \cdot 10^{5} \mathrm{~J}
$$

Change of internal energy:

$$
\Delta U=Q+W=2 \cdot 10^{6} \mathrm{~J}-8 \cdot 10^{5} \mathrm{~J}=1.2 \cdot 10^{6} \mathrm{~J}
$$

In the step 2-3 isochoric compression of gas takes place:

$$
Q=n C_{V} \Delta T=481.1 \mathrm{~mol} \cdot \frac{3}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot \Delta T
$$

Let's find change in temperature:

$$
\frac{p_{2}}{T_{2}}=\frac{p_{3}}{T_{3}} ; T_{3}=\frac{p_{3} \cdot T_{2}}{p_{2}}=\frac{1 \mathrm{bar} \cdot 250 \mathrm{~K}}{2 \mathrm{bar}}=125 \mathrm{~K}
$$

Finally, we see one more mistake in the data given (100 K instead of 125 K).

$$
Q=481.1 \mathrm{~mol} \cdot \frac{3}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot(125 \mathrm{~K}-250 \mathrm{~K})=-7.5 \cdot 10^{5} \mathrm{~J}
$$

Work is equal to zero, as the volume stays constant. Thus, change of internal energy is:

$$
W=0 ; \Delta U=Q+W=-7.5 \cdot 10^{5} \mathrm{~J}
$$

Change in enthalpy is:

$$
\Delta H=Q+V \Delta p=-7.5 \cdot 10^{5} \mathrm{~J}+5 m^{3} \cdot(2-1) \cdot 10^{5} \mathrm{~Pa}=-2.5 \cdot 10^{5} \mathrm{~J}
$$

Step 3-4 is isothermal process, where the change of internal energy is zero:

$$
\Delta U=0
$$

For that, the heat is equal to the work:

$$
Q=-W=n R T \ln \frac{V_{4}}{V_{3}}=481.1 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot 125 \mathrm{~K} \cdot \ln \frac{1}{5}=8.05 \cdot 10^{5} \mathrm{~J}
$$

Then, change in enthalpy for isothermal process is also zero:

$$
\Delta H=0
$$

Task says that the pressure in point 3 is 10 bar. But, there is a mistake:

$$
p_{4} V_{4}=p_{3} V_{3} ; p_{4}=\frac{p_{3} V_{3}}{V_{4}}=\frac{1 \mathrm{bar} \cdot 5 \mathrm{~m}^{3}}{1 \mathrm{~m}^{3}}=5 \mathrm{bar}
$$

Step 4-1 is one more isochoric compression:

$$
\begin{gathered}
Q=n C_{V} \Delta T ; \\
\Delta T=T_{4}-T_{3}=50 \mathrm{~K}-125 \mathrm{~K}=-75 \mathrm{~K} \\
Q=481.1 \mathrm{~mol} \cdot \frac{3}{2} \cdot 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot(-75 \mathrm{~K})=-4.5 \cdot 10^{5} \mathrm{~J}
\end{gathered}
$$

Work is equal to zero, as the volume stays constant. Thus, change of internal energy is:

$$
W=0 ; \Delta U=Q+W=-4.5 \cdot 10^{5} \mathrm{~J}
$$

Change in enthalpy is:

$$
\Delta H=Q+V \Delta p=-4.5 \cdot 10^{5} \mathrm{~J}+1 \mathrm{~m}^{3} \cdot(5-1) \cdot 10^{5} \mathrm{~Pa}=-0.5 \cdot 10^{5} \mathrm{~J}
$$

