Answer on Question#69479 – Chemistry – General chemistry

Question: Deduce de Broglie relation for photons, using Planck's equation and Einstein's equation?

Answer:

Einstein's equation: $\mathbf{E} = \mathbf{mc^2}$, where $\mathbf{E} = \text{energy}$, $\mathbf{m} = \text{mass}$, $\mathbf{c} = \text{speed of light}$.

Planck's equation: $\mathbf{E} = \mathbf{h}\mathbf{v}$, where $\mathbf{E} = \text{energy}$, $\mathbf{h} = \text{Plank's constant}$, $\mathbf{v} = \text{frequency}$.

Two energies would be equal: $mc^2 = h\nu$

It is known that $v = \frac{c}{\lambda}$, where $\lambda = \text{wavelength}$

$$mc^2 = h\frac{c}{\lambda}$$

$$\lambda = \frac{hc}{mc^2} = \frac{h}{mc} - \text{ de Broglie relation for photons.}$$

Answer provided by AssignmentExpert.com