#68498 Chemistry, Other

A student placed the same chemical amount of $SO_{2(g)}$ and $NO_{2(g)}$ into a 1.0 L container. At equilibrium, the concentration of both $SO_{3(g)}$ and $NO_{(g)}$ was 0.30 mol/L. What was the equilibrium concentration of $SO_{2(g)}$ and $NO_{2(g)}$? Kc= 9.5

 $SO_{2(g)}+NO_{2(g)}--> SO_{3(g)}+NO_{(g)}$

Answer:

	SO ₂	NO ₂	NO	SO ₃
Initial	0.3	0.3	0	0
Change	-x	-X	+x	+x
Equilibrium	0.3-x	0.3-x	0+x	0+x
	$K_{eq} = \frac{[NO][SO_3]}{[SO_2][NO_2]}$			
		$9.5 = {[0.3 -]}$	$\frac{x^2}{x][0.3-x]}$	
		$9.5 = {[0.3 -]}$	$\frac{x^2}{x][0.3-x]}$	

x = 0.23

Therefore, equilibrium concentrations will be:

 $SO_2 \qquad NO_2 \qquad NO \qquad SO_3$ Equilibrium $0.07 \qquad 0.07 \qquad 0.23 \qquad 0.23$