Question:

What is the energy of a mole of photons of red light with a wavelength of 632 nm?

Solution:

Photon energy is described by the following equation:

 $E = h * c/\lambda$,

Where

E – photon energy, J;

h – Planck constant, $6.63*10^{-34}$ J*s;

c – speed of light in vacuum, $3.00*10^8$ m/s

 λ – photon wavelength, m.

Note that $1 \text{ nm} = 10^{-9} \text{ m}$.

Do the calculation:

 $\mathsf{E}=6.63^{*}10^{-34}\mathsf{J}^{*}\mathsf{s}^{*}3.00^{*}10^{8}\mathsf{m/s}/632^{*}10^{-9}\mathsf{m}=3.15^{*}10^{-19}\mathsf{J}.$

The mole of photons contains 6.02*10²³ photons. Than total energy is:

3.15*10⁻¹⁹J * 6.02*10²³ = 189630 J

Answer:

189630 Joules

Answer provided by https://www.AssignmentExpert.com