Answer on Question#67628 – Chemistry – General chemistry

Question:

A student performs an experiment where he reacts 15.5 g of NaOH w/ 25 grams of H₂SO₄

Calculate mass of each product that the reaction will produce

What is the excess reactant left at the end of reaction?

PLEASE SHOW ALL WORK I'M HERE TO LEARN NOT TO BE SPOONFED

Solution:

1. Calculate moles of NaOH and H₂SO₄.

$$n(NaOH) = \frac{m(NaOH)}{M(NaOH)} = \frac{15.5 g}{40 g/mol} = 0.388 mol$$

$$n(H_2SO_4) = = \frac{m(H_2SO_4)}{M(H_2SO_4)} = \frac{25 g}{98 g/mol} = 0.255 mol$$

2. There is a reaction between NaOH and H₂SO₄:

$$2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

2 moles of NaOH is needed for every 1 mole of H₂SO₄.

$$\frac{n(NaOH)}{2} = \frac{0.388 \, mol}{2} = 0.194 mol - H_2 SO_4 \text{ is needed for}$$

reaction with 0.388 mol NaOH

$$n(H_2SO_4 \ excess) = 0.255 \ mol - 0.194 \ mol = 0.061 \ mol$$
 or

$$m(H_2SO_4 \ excess) = 98 \frac{g}{mol} \times 0.061 mol = 5.98g$$

3. Calculate mass of each product that the reaction will produce

$$n(Na_2SO_4) = \frac{1}{2}n(NaOH) = \frac{1}{2} \times 0.388 = 0.194 \ mol$$

$$m(Na_2SO_4) = 142 \frac{g}{mol} \times 0.194 \ mol = 27.6 \ g$$

$$n(H_2O) = n(NaOH) = 0.388 \ mol$$

$$m(H_2O) = 18 \frac{g}{mol} \times 0.388 mol = 6.98 \ g$$

Answer:

27.6 g Na₂SO₄; 6.98 g H₂O

5.98 g H₂SO₄ excess

Answer provided by www.AssignmentExpert.com