Answer on Question #67405, Chemistry, General Chemistry

Why is the equilibrium between the acid NaH₂PO₄ and its conjugate base Na₂HPO₄, a suitable buffer for maintaining intracellular pH (pH 6.9-7.3)?

Solution:

This buffer solution is a mixture of a weak acid H_3PO_4 and a salt of its conjugate base (NaOH) - Na_2HPO_4 . So, the acid for this buffer is NaH_2PO_4 , and the salt is Na_2HPO_4 .

The pH value of acidic buffer system we can calculate, using formula:

pH = pKa +
$$\lg \frac{C(Na2HPO4)}{C(NaH2PO4)}$$
, where pKa = - \lg Ka (Ka is acid constant dissociation).

$$Ka(H_3PO_4) = 6.2 \cdot 10^{-8}$$

We can determine the pKa value:

pKa =
$$-\lg 6.2 \cdot 10^{-8} = 7.21$$

If the ratio
$$\frac{C(Na2HPO4)}{C(NaH2PO4)} = 1$$
, it means, that:

$$\lg \frac{C(Na2HPO4)}{C(NaH2PO4)} = \lg 1 = 0$$

Thus:

$$pH = 7.21 + 0 = 7.21$$

Answer: pH = 7.21.

Answer provided by AssignmentExpert.com