Answer on Question #67123, Chemistry, General Chemistry

When 9 grams of KClO₃ are dissolved in 50 grams of water at 20°C, how is the resulting mixture described?

- 1.heterogeneous and supersaturated
- 2.heterogeneous and unsaturated
- 3.homogeneous and supersaturated
- 4.homogeneous and unsaturated

Solution:

First of all, we need determine solubility of KClO₃. For it we can use following diagram:

Find 20°C on the Table G x-axis, then move straight up to the $KClO_3$ curve. Move straight over to the y-axis, and read the scale (11 g). This means that 11 grams of $KClO_3$ are soluble in 100 grams of water at 20°C.

As for the solubility of $KCIO_3$ in 50 grams of water. Place 50 g of water in the numerator, and 100 g of water in the denominator, and solve.

$$\frac{50. \ g \ of \ water}{100. \ g \ of \ water} = 0.50$$
 multiplier

We can use the multiplier factor with the 11~g of $KCIO_3$ and determine the mass of $KCIO_3$ soluble in 50~g of water.

11 g of KClO₃ x 0.50 = 5.5 g of KClO₃ soluble in 50 g of water at 20°C.

Thus, the solution is heterogeneous and supersaturated.

Answer: 1.