Answer on the question \#67065, Chemistry / Physical Chemistry

Question:

A first-order reaction is 40% complete at the end of 50 min , in how many minutes will the reaction be 80% complete?

Solution:

The equation that describes kinetics for the first-order reaction is the following:

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

where $[A]_{t}$ and $[A]_{0}$ are the concentrations of the reactant at time t and $t=0$ (or initial concentration), and k is the rate constant of the reaction.

Let's find the rate constant of the reaction:

$$
k=-\frac{\ln [A]_{t}-\ln [A]_{0}}{t}=\frac{1}{t} \cdot \ln \left(\frac{[A]_{0}}{[A]_{t}}\right)=\frac{1}{50(m)} \cdot \ln \left(\frac{100}{100-40}\right)=0.0102 m^{-1}
$$

Then, we can find the time when the reaction will be 80% complete:

$$
t=\frac{1}{k} \cdot \ln \left(\frac{[A]_{0}}{[A]_{t}}\right)=\frac{1}{0.0102\left(m^{-1}\right)} \cdot \ln \left(\frac{100}{100-80}\right)=157.5 \mathrm{~m}
$$

Answer: It will take 157.5 minutes for the reaction to complete at 80%.

