Answer on the question \#67062, Chemistry / Physical Chemistry

Question:

A first-order reaction is 60% complete at the end of 90 min , what is the value of rate constant in sec-1?

Solution:

The equation that describes the kinetics of first-order reaction is:

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

where $[A]_{t}$ and $[A]_{0}$ are the concentrations of the reactant at time t and time $t=0$ (or initial concentration) and k is the rate constant of the reaction.

Rearranging the expression above, we get the rate constant of the reaction:

$$
k=-\frac{1}{t}\left(\ln [A]_{t}-\ln [A]_{0}\right)=\frac{1}{t}\left(\ln [A]_{0}-\ln [A]_{t}\right)=\frac{1}{t} \ln \frac{[A]_{0}}{[A]_{t}}
$$

Thus, we have only to introduce the values to calculate the rate constant:

$$
k=\frac{1}{90(\mathrm{~m}) \cdot 60(\mathrm{~s} / \mathrm{m})} \cdot \ln \frac{100}{100-60}=1.70 \cdot 10^{-4}\left(\mathrm{~s}^{-1}\right)
$$

Answer: The rate constant of the process is $1.70 \cdot 10^{-4} \mathrm{~s}^{-1}$

