Answer on Question #66939, Chemistry / General Chemistry

The rate constant for the equation 2 $C_2F_4 \rightarrow C_4F_8$ is 0.0488 M⁻¹ s⁻¹. We start with 0.166 mol C_2F_4 in a 5.00-liter container, with no C_4F_8 initially present. What will be the concentration of C_2F_4 after 2.00 hours? Answer in units of M.

Solution:

 $-d[A] / dt = k \times [A]^{2}$ $(1 / [A]^{2}) d[A] = -k \times dt$ $\int (1 / [A]^{2}) d[A] = \int -k dt$ $-1/[A] + 1 / [A_{0}] = -k \Delta t$ $1 / [A] = 1 / [A_{0}] + k \Delta t$ $1 / [A] = 1 / (0.166 \text{ moles } / 5.00L) + (0.0488 \text{ M}^{-1} \text{ s}^{-1}) \times (7200 \text{ s})$ 1 / [A] = 381.5 / M [A] = 0.00262 MAnswer: 0.00262 M

Answer provided by www.AssignmentExpert.com