Answer on the question \#66904, Chemistry / Physical Chemistry

Question:

A mixture of $2.0 \times 10^{\wedge}-3 \mathrm{~kg}$ of H 2 and $2.0 \times 10^{\wedge}-3 \mathrm{~kg}$ of He exerts a pressure of $1.5 \times 10^{\wedge} 5 \mathrm{~Pa}$. What are the partial pressures of H 2 and He ?

Solution:

The number of the moles of hydrogen and helium gases are:

$$
\begin{gathered}
n_{H_{2}}=\frac{m}{M}=\frac{2.0 \cdot 10^{-3}(\mathrm{~kg})}{2 \cdot 10^{-3}\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)}=1 \mathrm{~mol} \\
n_{H e}=\frac{2.0 \cdot 10^{-3}(\mathrm{~kg})}{4 \cdot 10^{-3}\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)}=0.5 \mathrm{~mol}
\end{gathered}
$$

According to the ideal gas law, the pressure and the quantity of gas are related as:

$$
p V=n R T
$$

Then, the pressure of the mixture of hydrogen and helium gases is:

$$
p V=\left(n_{H_{2}}+n_{H e}\right) R T
$$

where overall pressure p is the sum of partial pressures $p_{H_{2}}+p_{H e}$.

The ideal gas law can be equally written for hydrogen and helium gases:

$$
\begin{aligned}
& p_{H_{2}} V=n_{H_{2}} R T \\
& p_{H e} V=n_{H e} R T .
\end{aligned}
$$

Thus, the partial pressure of hydrogen is:

$$
p_{H_{2}}=\frac{n_{H_{2}} R T}{V}=\frac{n_{H_{2}} p}{n}=\frac{n_{H_{2}} p}{n_{H_{2}}+n_{H e}}=\frac{1(\mathrm{~mol}) \cdot 1.5 \cdot 10^{5}(\mathrm{~Pa})}{1+0.5(\mathrm{~mol})}=1 \cdot 10^{5}(\mathrm{~Pa})
$$

The partial pressure of helium is the overall pressure minus partial pressure of hydrogen:

$$
p_{H e}=1.5 \cdot 10^{5}(P a)-1 \cdot 10^{5}(P a)=0.5 \cdot 10^{5}(P a)
$$

Answer: Partial pressure of hydrogen and helium are $1 \cdot 10^{5}(P a)$ and $0.5 \cdot 10^{5}(P a)$, respectively.

