## Answer on Question #66542, Chemistry / General Chemistry

In the % acetic acid in vinegar experiment, the %  $HC_2H_3O_2$  is given by the equation below. Show the calculation of the %  $HC_2H_3O_2$  if 18.7 mL of the standard NaOH above are required to titrate 2.88 grams of vinegar.

% 
$$HC_2H_3O_2 = (mL NaOH / 1000) \times M(NaOH) \times 60 \times 100$$

## **Solution:**

%, 
$$HC_2H_3O_2 = \frac{V(NaOH) * M(NaOH) * 60 * 100 \%}{1000 * m(vinegar)}$$

The result depends on molarity of NaOH:

If 1M NaOH was used, we have become:

$$\%, HC_2H_3O_2 = \frac{18.7 * 40 * 60 * 100 \%}{1000 * 2.88} = 1558.3 \%$$

Result is wrong and without sense.

If 0.1M NaOH was used, we have become

%, 
$$HC_2H_3O_2 = \frac{18.7 * 40 * 0.1 * 60 * 100 \%}{1000 * 2.88} = 155.8 \%$$

Result is wrong and without sense.

If 0.01M NaOH was used, we have become:

%, 
$$HC_2H_3O_2 = \frac{18.7 * 40 * 0.01 * 60 * 100 \%}{1000 * 2.88} = 15.6 \%$$

Result is right.

**Answer**: 15.6 %.