Answer on Question #66236, Chemistry / General Chemistry

Partial Pressure:

Part A:

Three gases (8.00 g of methane, CH_4 , 18.0 g of ethane, C_2H_6 , and an unknown amount of propane, C_3H_8) were added to the same 10.0-L container. At 23.0 °C, the total pressure in the container is 4.10 atm . Calculate the partial pressure of each gas in the container. Express the pressure values numerically in atmospheres, separated by commas. Enter the partial pressure of methane first, then ethane, then propane.

Solution:

We use the Mendeleev-Clapeyron equation PV = nRTFind the pressure P = nRT / V((8.00 g CH₄) / (16.04 g CH₄/mol)) x (0.082 L atm/K mol) x (296 K) / (10.0 L) = 1.21 atm CH₄ ((18.00 g C₂H₆) / (30.07 g C₂H₆/mol)) x (0.082 L atm/K mol) x (296 K) / (10.0 L) = 1.45 atm C₂H₆ (4.10 atm) - (1.21 atm) - (1.45 atm) = 1.44 atm C₃H₈

Answer: 1.21 atm, 1.45 atm, 1.44 atm

Part B:

A gaseous mixture of O2 and N2 contains 36.8 % nitrogen by mass. What is the partial pressure of oxygen in the mixture if the total pressure is 805 mmHg ? Express you answer numerically in millimeters of mercury.

Solution:

Then partial pressure O_2 = mole fraction O_2 x total pressure Mass N_2 in 100 g = 36.8 % x 100 g = 36.8 g Moles N_2 = mass / molar mass = 36.8 g / 28.02 g/mol = 1.31335 mol Mass O_2 = 100 % - 36.8 % = 63.2 % Mass O_2 in 100 g = 63.2 g Moles O_2 = 63.2 g / 32.00 g/mol = 1.975 mol Total moles gas = 1.31335 mol + 1.975 mol = 3.28835 mol Mole fraction O_2 = 1.975 mol / 3.28835 mol = 0.6006 Partial pressure O_2 = 0.6006 x 805 mmHg = 483 mmHg

Answer: 483 mmHg

Answer provided by http://www.AssignmentExpert.com/