Butane c4h10 is an easily liquefied gaseous fuel. Calculate the density of butane at 0.857atm and 22 degrees Celsius.

$$T = 273 + 22^{\circ}C = 295 \text{ K}.$$

$$R = 0.082 \frac{atm*litre}{K*mole}$$

$$P = 0.857$$
 atm.

According to Mendeleev-Clapeyron equation:

$$PV = RT$$

Thence

$$V = \frac{RT}{P}$$
.

 $V = (0.082 \, \frac{\text{atm*litre}}{\text{K*mole}} * \, 295 \, \, \text{K}) \, / \, 0.857 \, \, \text{atm} = 28.23 \, \, \text{l/mole} = 28 \, 230 \, \, \text{cm}^{3} / \text{mole}.$

$$M (C_4H_{10}) = 12*4 + 10 = 58 \text{ g/mole.}$$

$$\rho = \frac{m}{V}$$
, g/cm³.

 ρ (C_4H_{10}) = (58 g/mole) / 28 230 cm³/mole = 0.002 g/cm³ = 2 g/litre.

ANSWER: 0.002 g/cm³ or 2 g/litre.

Answer provided by AssignmentExpert.com