Question #66091, Chemistry / General Chemistry

Consider the following reaction: 2N2O(g)+N2H4(g)<=>3N2(g)+2H2O(g)

Initially there are 0.10 moles of N_2O and 0.25 mol of N_2H_4 in a 10.0 L container. If there are 0.06 mol of N_2O at equilibrium, how many moles of N_2 are present at equilibrium?

Answer :

 $2N_2O(g)+N_2H_4(g) \le 3N_2(g)+2H_2O(g)$ Make the table

	N ₂ O	N_2H_4	N ₂	H ₂ O
Initial moles	0.1	0.25	0	0
Change in moles				
Final moles	0.06			

According to chemical equation:

 $n(N_2) = 3/2n(N_2O)$

Fill the table:

	N ₂ O	N_2H_4	N ₂	H ₂ O
Initial moles	0.1	0.25	0	0
Change in moles	0.1 - 0.06 = 0.04		$\frac{3 \times 0.04}{2} = 0.06$	
Final moles	0.06		0 + 0.06	
			= 0.06	

The answer is **0.06 moles of N₂ are present at equilibrium**

Answer provided by www.AssignmentExpert.com