Answer on the question \#65813, Chemistry / Physical Chemistry

Question:

Question 7 : One mole of an ideal gas is heated at a constant pressure of 101300 N m

2
m2
, from 273.2 K to 373 K . Calculate the work involved $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K})$.
$8.314 \mathrm{~J} / \mathrm{mol}$
$831.4 \mathrm{~J} / \mathrm{mol}$
$83.14 \mathrm{~J} / \mathrm{mol}$
$8314 \mathrm{~J} / \mathrm{mol}$

Question 8 : Which of the following expressions is associated with the law of conservation of energy?
$d E=q+w$
$q=m C d T$
$d G=d H-T d S$
$H=E+P V$

Solution:

Question 7.
The work is:

$$
W=p\left(V_{2}-V_{1}\right)
$$

There, using the equation of ideal gas, we calculate the volume:

$$
\begin{gathered}
V_{2}=\frac{n R T_{2}}{p}=\frac{8.31\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) 373(\mathrm{~K})}{101300\left(\mathrm{~N} \mathrm{~m}^{-2}\right)} ; V_{2}=0.03060 \mathrm{~m}^{3} \\
V_{1}=\frac{n R T_{1}}{p}=\frac{8.31\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) 273.2(\mathrm{~K})}{101300\left(\mathrm{~N} \mathrm{~m}^{-2}\right)} ; V_{2}=0.02241 \mathrm{~m}^{3} \\
\begin{array}{c}
W=101300\left(\mathrm{~N} \mathrm{~m}^{-2}\right) \cdot(0.03060-0.02241)\left(\mathrm{m}^{3}\right) \\
=829.74 \mathrm{~J} . \text { As we have } 1 \text { mole, } \text { the work per mole is } \mathrm{W}=829.74 \mathrm{~J} / \mathrm{mol}
\end{array}
\end{gathered}
$$

Question 8.
$d E=q+w$
This expression shows that the change in the internal energy of the system is equal to sum of the quantity of energy added to the system by a heating process and the quantity of energy added to system due to the work done on the system.

Answer: Q. $7829.74 \mathrm{~J} / \mathrm{mol}$ (choose 831 , as the closest) $\mathrm{Q} .8 \mathrm{dE}=\mathrm{q}+\mathrm{w}$

