Answer on Question #65160 - Chemistry - General Chemistry

Question: What is the number of oxygen atoms in a box filled with carbon dioxide that measures 1.55 ft long, 2.88 ft wide, and 0.518 ft deep?

<u>Solution</u>

1) Find the volume of the container (for the easier further calculations, find it in liters, so the dimensions of the container must be transferred into decimeters). 1 ft is 0.3048 m or 3.048 dm, so the volume of the container is

$$(3.048 * 1.55) * (3.048 * 2.88) * (3.048 * 0.518)$$

2) As none else is mentioned in the question, we assume that gas in the container is under normal conditions (P = 101.3 kPa and T = 273.15 K). According to the ideal gas law,

* T,

where R is the gas constant (8.314 J/mol^{*}K). So, the amount of substance of CO_2 is

n(CO) _____

3) Each CO_2 molecule contains 2 oxygen atoms. So, the number of oxygen atoms in the container can be found from the equation

 $N(O) = 2 * n(CO_2) * N$

If other conditions different from normal (pressure, temperature) are mentioned in the question, you have to find the amount of substance of CO_2 according to the ideal gas law with your given pressure and temperature, and then find the number of atoms as shown.

Answer: the number of oxygen atoms in the container is $3.5166*10^{24}$.

Answer provided by AssignmentExpert.com