Using heat formations, calculate the heat of vaporization for methyl alcohol, CH₃OH, at 25 Celsius (answer:38 kj/mol).

How many kJ's are required to vaporize 28.6 g CH₃OH at standard conditions (answer:33.9 kj/mol).

Answer:

 $\begin{array}{l} q=h_e\cdot n\\ where\\ h_e=evaporation \ heat\ (kJ/mol)\\ n=moles\ of\ liquid\ (mol)\\ Assuming\ that\ m\ (CH_3OH)\ is\ equivalent\ to\ 1\ mole,\ q=he\approx 38\ kJ/mol \end{array}$

Methanol (I) \rightarrow Methanol (g) Methanol (CH₃OH_{liq}) = -75.5 kj/mol and Methanol (CH₃OH_{vap}) = - 38 kj/mol M (CH₃OH)=32.04 g/mol n=m/M n (CH₃OH)=28.6/38=0.75 mol Heat of vaporisation deta H = deta Hproduct - delta H reactant = - 38 -(- 83.2) = 45.2 kj/mol Heat of vaporisation of methanol = 45.2 · 0.75 = 33.9 kJ