Answer on Question #64158 - Chemistry - General Chemistry

1. If 5.40 kcal of heat is added to 1.00 kg of water at 100°C, how much steam at 100°C is produced? Show all calculations leading to an answer.

Answer

Since the temperatures of water and steam in the task are both equal to 100° C, all heat is used for changing the state (vaporization). The specific latent heat of water vaporization L = 540 kcal/kg. That means that 1 kg of water requires 540 kcal of heat to boil, L = Q/m. Thus, m = Q/L and 5.40 kcal of heat (Q) produces m = 5.40 kcal / 540 kcal/kg = 0.01 kg of steam.

2. The Kw of water varies with temperature. Calculate the pH of water at 46° C with a Kw = 1.219 x 10-14. Show all calculations leading to an answer.

Answer

 H_2O ↔ $H^+ + OH^-$ Kw is a water autoionization constant, Kw = $[H^+] \cdot [OH^-]$, where $[H^+]$ is the molar concentration of hydrogen (or hydroxonium ion), and $[OH^-]$ is the concentration of hydroxide ion. At pure water, as it can be sees from the chemical equation above, H^+ and OH^- molar concentrations are equal, $[H^+] = [OH^-]$. So, Kw = $[H^+]^2$ Thus, $[H^+] = \sqrt{K_w}$ By definition, pH = $-log_{10}$ [H⁺]

So, pH = $-\log_{10}\sqrt{K_w}$ At 46°C pH = $-\log_{10}\sqrt{1.219 \times 10^{-14}} = 6.957$

3. Calculate the hydroxide ion concentration of a solution with pH = 3.25. Show all calculations leading to an answer.

Answer

By definition, pH = $-\log_{10}$ [H⁺]. Thus, hydrogen concentration [H⁺] = $10^{-pH} = 10^{-3.25}$ Water autoionization constant Kw = [H⁺]·[OH⁻] = 1.00×10^{-14} So, [OH⁻] = Kw / [H⁺] = 1.00×10^{-14} / $10^{-3.25} = 1.78 \times 10^{-11}$

4. The following unbalanced equation describes the reaction that can occur when lead (II) sulfide reacts with oxygen gas to produce lead (II) oxide and sulfur dioxide gas:
PbS + O2 PbO + SO2
Balance the equation and describe in words the electron transfer(s) that takes place.

Answer

$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$

O has an oxidation number of zero in O_2 , but O in compounds has an oxidation number of -2, so each atom of O gets 2 electrons during the reaction. The oxidation number of Pb remains the same (+2). S in compound PbS has an oxidation number of -2, but in compound

 SO_2 it has an oxidation number of +4, so each atom of S loses 6 electrons during the reaction.

5. What type of radiation is emitted when chromium-51 decays into manganese-51? Show the nuclear equation that leads you to this answer.

Answer

Using the in periodic table it can be found that we deal with ${}^{51}_{24}Cr$ and ${}^{51}_{25}Mn$. These isotopes have the same mass number, but different atomic numbers. During the decay, ${}^{51}_{24}Cr$ changes atomic number by 1, because 1 neutron converts into 1 proton and 1 electron. ${}^{51}_{24}Cr \rightarrow {}^{51}_{25}Mn + {}^{0}_{-1}e$ Electron is emitted in the reaction. Such type of decay is called beta-minus decay.

6. A radioactive nucleus alpha decays to yield a sodium-24 nucleus in 14.8 hours. What was the identity of the original nucleus? Show the nuclear equation that leads you to this answer.

Answer

Products of decay are following:

 $^{24}_{11}$ Na – sodium-24

 ${}_{2}^{4}$ He – alpha particle (nucleus of a helium-4)

So, $_Z^A X \rightarrow _{11}^{24} Na + _2^4 He$, where X is an unknown element, A – atomic number, Z – mass number.

A = 24 + 4 = 28

Z = 11 + 2 = 13

Mass number 13 in the periodic table has aluminum. Thus, the unknown element is aluminium-28. The final nuclear equation is:

 $^{28}_{13}$ Al $\rightarrow ^{24}_{11}$ Na + $^{4}_{2}$ He

Answer provided by <u>www.AssignmentExpert.com</u>