#63424 Chemistry, General Chemistry

Chapter 15 (15.56)

At 80°C, Kc=1.87×10⁻³ for the reaction $PH_3BCl_{3(s)} \rightleftharpoons PH_{3(g)} + BCl_{3(g)}$

- 1) Calculate the equilibrium concentration of PH₃ if a solid sample of PH₃BCl₃ is placed in a closed vessel at 80°C and decomposes until equilibrium is reached.
- 2) Calculate the equilibrium concentration of BCl₃ if a solid sample of PH₃BCl₃ is placed in a closed vessel at 80°C and decomposes until equilibrium is reached.
- 3) If the flask has a volume of 0.24 L, what is the minimum mass of PH₃BCl_{3(s)} that must be added to the flask to achieve equilibrium?

Answer:

	PH_3BCI_3	PH_3	BCl ₃
Initial	don't know	0	0
Change	-X	+χ	+χ
Equilibrium		+x	+x

The amount of PH_3BCl_3 to begin with is unknown. However, this is irrelevant because we dont compute solids into the K_{eq} formula.

Then:
$$K_c = 1.87 \cdot 10^{-3} = [PH_3] [BCl_3] = x^2$$

 $x = 4.32 \cdot 10^{-2} \text{ mol/ L}$

If we have a flask of 0.24 L, then we must have $4.32 \cdot 10^{-2} \cdot 0.24 = 1.04 \cdot 10^{-2}$ mol of $PH_{3(g)}$ and $BCl_{3(g)}$. The moles of PH_3 and BCl_3 are the same. Therefore, either one gives the min amount of PH_3Cl_3 . We then have $1.04 \cdot 10^{-2}$ mol of PH_3BCl_3 , but in mass units this will be: $m(PH_3BCl_3) = 1.04 \cdot 10^{-2}$ mol · 151.13 g/mol = 1.57 g.