Question \#63034, Chemistry / Physical Chemistry

A mixture of CO and CO 2 is found to have density of $1.7 \mathrm{~g} / \mathrm{lit}$ at 1 atm and 273 k . The mole fraction of CO is.

Solution:

According to Mendeleev-Clapeiron equation:

$$
\begin{gathered}
p V=n R T=\frac{m}{M_{r}} R T \\
d=\frac{m}{V}=\frac{p M_{r}}{R T} \\
M_{r}=\frac{d R T}{p}
\end{gathered}
$$

Supose, mole fraction of CO is x. Then mole fraction of CO2 is 1-x.

$$
\begin{gathered}
M_{r}(m x)=x M_{r}(\mathrm{CO})-(1-x) M_{r}\left(\mathrm{CO}_{2}\right)=28.01 x+44.01 x-44.01=72.02 x-44.01 \\
72.02 x-44.01=\frac{1700 \frac{g}{m^{3}} \times 8.31 \frac{J}{K \times m o l} \times 273 \mathrm{~K}}{101325 \mathrm{~Pa}} \\
72.02 x-44.01=38.06 \\
72.02 x=38.06+44.01 \\
72.02 x=82.07 \\
x=\frac{72.02}{82.07}=0.88
\end{gathered}
$$

Answer:

The mole fraction of CO is 0.88 .

